NumeRe v1.1.4
NumeRe: Framework für Numerische Rechnungen
muParserTemplateMagic.h File Reference
#include <cmath>
#include "muParserError.h"
Include dependency graph for muParserTemplateMagic.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

struct  mu::TypeInfo< T >
 A class singling out integer types at compile time using template meta programming. More...
 
struct  mu::TypeInfo< char >
 
struct  mu::TypeInfo< short >
 
struct  mu::TypeInfo< int >
 
struct  mu::TypeInfo< long >
 
struct  mu::TypeInfo< unsigned char >
 
struct  mu::TypeInfo< unsigned short >
 
struct  mu::TypeInfo< unsigned int >
 
struct  mu::TypeInfo< unsigned long >
 
struct  mu::MathImpl< T >
 A template class for providing wrappers for essential math functions. More...
 

Namespaces

namespace  mu
 Namespace for mathematical applications.
 

Functions

std::complex< double > intPower (const std::complex< double > &, int)
 This function calculates the power of a value with the specialization that the exponent is an integer. Function overload for complex-valued bases. More...
 

Function Documentation

◆ intPower()

std::complex< double > intPower ( const std::complex< double > &  dNumber,
int  nExponent 
)

This function calculates the power of a value with the specialization that the exponent is an integer. Function overload for complex-valued bases.

Parameters
dNumberconst std::complex<double>&
nExponentint
Returns
std::complex<double>

Definition at line 3640 of file tools.cpp.

References date::abs(), and intPower().

Referenced by applyNiceAxis(), calcStats(), cartToCyl(), cartToPolar(), complex_zeta(), convertBaseToDecimal(), cylToPolar(), mu::Parser::Diff(), differentiate(), Memory::getOneWayAnova(), mu::ParserBase::ParseCmdCodeBulk(), mu::ParserBase::ParseCmdCodeBulkParallel(), parser_AssociatedLaguerrePolynomial(), parser_AssociatedLegendrePolynomial(), parser_LaguerrePolynomial(), parser_LegendrePolynomial(), parser_polynomial(), parser_round(), parser_SphericalBessel(), parser_SphericalNeumann(), parser_ZernikeRadial(), and mu::MathImpl< T >::Pow().

Here is the call graph for this function: